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HIGH-FREQUENCY ASYMPTOTIC FORMS OF REFRACTED AND TRANSMITTED WAVES
WHEN SOUND IS SCATTERED BY A HOLLOW ELASTIC SPHERE FILLED WITH LIQUID”

A.P. PODDUBNYAK

The Sommerfeld-Watson transformation, the reflection method and the
theory of graphs are used to investigate the components of the echo-
signal from a hollow elastic sphere with a concentric liquid filler,
formed by reflection and rereflection at the media interfaces.

A similar approach was used earlier to investigate the sound field in a layer /1/, and
the rereflection of waves by a two-layer liquid sphere /2/. Reflected and transmitted (geo-
metric) waves which are of fundamental importance in the potential (background) scattering of
sound by an object, were considered in /3—8/ assuming the cbject to be solid. The presence
inside the scatterer of a liquid or elastic f£illing considerably complicates the process of
rereflection /9, 10/. Below, we analyze high-frequency harmonic and non-stationary sound
waves reflected and transmitted by a hollow elastic sphere filled with acoustic liquid.

1. The problem is stated and formally solved using a Fourier transformation with respect
to time and expansion in spherical harmonics in /11/. The Fourier transform of the pressure
in the scattered wave in the form of a Sommerfeld-Watson integral over the complex angular
momentum (the normal wave mode number) /12/, which enables the reflected and rereflected com-
ponents of the echo-signal /2, 3/ to be investigated
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Here C is the part of the contour which also includes the poles of the function R, that cor-
respond to surface waves /3, 12—15/ and passes along the path at steepest descent, P;(r) and
@, (z) are the Legendre functions, h® (z) (k =1, 2) are Hankel spherical functionms, (w) is
the Fourier transform of the acoustic signal radiated by a point source at a distance |, from
the centre of the scatterer, which is taken as the origin of a spherical system of coordinates
¢ (0 =0,¢ =0 is the direction to the source), @ is the parameter of the Fourier trans-
formation (the dimensionless frequency), and p, is the normalizing pressure. The function

R, is related to z; by the equation /2, 5/

BY (w)
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where z; is equal to the ratio of two sixth-order determinants, which follow from the condi-
tions of contact between the elastic and liquid media and composed of combinations of Bessel,
Neumann, and Hankel spherical functions /11/. Omitting the details related to the expansion
of these determinants, we present the final formula

f_a E’F

Ri=R — oo TR, (1.2)

R =FRys+ Tff_—ﬂ- . Rx°=Ru+ifT”’h

fi= A'ZB (@aY 4+ bapYLr) —8Y Yr (1.3)
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Ap=Ai't, yp =M, r=1ip", O=Aiu®, S=rnn
Ja=E8a", Ea=84®, Pap=—84" p=";

A‘pq“ = (Ah'thq —'ZBktqu) Cs_lv §Akt = (AktFxA - BktFlA) Ca-l
npq = (lepq - Naqu) Cs_lv Ty = (lesA - NuFIA) Ca-l_

a = (23 — 2,) NyC;Y, @ = (3,5 — Z15) N5Cr?

Riy = (23853 — N4 ) 7Y Ry = (215Byy — Npdy) Cr?
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A, B=L, T;A+#B;i,j,k,p, g, t=12;i%])
where the asterisk denotes complex conjugation. It is also assumed that when A =L, B =T,

then {=1,j=2, and when 4 =T, B=0L, then { =2,j=1. In formulas with a bar all func-
tions depend on W4 = W4, where oy, = 0Bs™, fa =cac?(4 =L, T, F). In thiscase gz, N,and C,

are replaced by %, Np and Cp. Here ¢ = ba’ is the ratio of the internal and external
radii of the shell, ¢, ¢, ps are the velocities of the lengitudinal and transverse waves, and
the density of the shell material, ¢, ¢r, Py pr are the velocities of sound and the densities

of the external acoustic medium and the filler, and hgy(z) is the derivative of the Hankel
spherical function with respect to the argument. The introduction of phase functions (the
ratio of the Hankel functions of the first and second kind) and the logarithmic derivative
of the Hankel functions is convenient for a geometric description of the wave propagation.
Thus the first term in R,° in (1.2) describes the wave reflection from the external surface
of the shell, and the second describes the propagation 'in the shell layer without entering
the filler. A similar wave picture on the side of liquid filler is obtained by considering
Re. The second term in R; (1.2) corresponds to rereflection of waves in the shell on
passing into the filler.

In a special case, by passing to the limit e—0 we obtain an expression for R, that
corresponds to the scattering of sound by a solid elastic sphere

Ry=R°=R; -+ T:f_—ﬁ ,  fi=mwyL + nryr + Syryr

fo = —o (ALyp + Aryr + oyLyr)

As ¢y — 0 we obtain the case of a liquid two-layer sphere /2/. If &¢—0 or &—1,
we obtain the case of a dense liquid sphere with parameters ¢;, p;, ©Or c¢p pr , respectively.

2. For further analysis it is important to establish the physical meaning of the coef-
ficients in R; (1.2), and to determine their connection with the reflection and transmission
coefficients. For a solid elastic cylinder this was done in /5/ using complicated trans-
formations. The same problem was solved more simply by a graphical method in /1/. * By

*Poddubnyak, A.P., On a method of determining geometric waves, when an acoustic wave is scat-
tered by an elastic circular cylinder. In: Proceedings of the 6-th Conference of Young
Scientists. 1Inst. Appl. Mech. and Math. Academy of Sciences of the UkrSsSR, L'vov, 1978.
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virtue of the presence of an additional inner interface in the object, the process of wave
rays splitting in the form of a multicomponent chain reaction becomes more complicated. Here
the theory of graphs is particularly advantageous.

We will write the function R, in a form equivalent to (1.2)

a3 A8, Y, — 9,QapY 1) — S5rY LY r]
A

Ry==Ry, - . B - — (2.1)
! e 1—1 2‘("ASAYA—rAQABYLT)_6SL7‘YLYT]
AiB
= . aiA!?F = - asjp (2.2)
— —r———— S =6+ —— -
Sa=Ta+t 14 Raip ! Lr 1+ Ragp
_ g b
()Aa=mAB<fA+ 1—7'%‘};—)‘ A B=L,T;A+B
T+ fAaly

We will represent each ray of the longitudinal and transverse wave by continuous and
dashed lines, considering them to be the edges of the graph, and the points of ray splitting
as the boundary points of the edge (the vertices of the graph). Four graphs are shown in Fig.l
in which the small circles denote the vertices of the graph on the external surface of the
shell r =1, while the black dots represent the vertices of the graph on the internal surface
of the shell r =¢. The graphs are constructed for the sums of all L- and T- modes in the
shell passing through the surface r =1 into the external acoustic medium, related to the
transmission coefficient and the phase path of the respective wave

o

M.
e A 4L P 2.
Mu=575 U=LTij=12 (2.3)

Cutting any graph at its vertex we obtain three parts, one of which corresponds to the
"exciting" wave, and the other two to the "excited" L- and T- modes which are of the same
type as the initial ones.

In Fig.l and in (2.3) M,,° denotes an A-
° graph (A = L, T) with waves formed as a conseguence
17 of sound waves penetrating into the shell, and
their reflection and splitting into L- and T- modes
on the surface r =¢ and their emergence into

the external medium, or after rereflection on the
/\\ external and internal shell surfaces followed by

N N N transmission into the external acoustic medium.

0 In the case of M,,° we have an A-graph with waves
Moy formed after rereflection from the external surface
‘ of the object r =1 from inside the back into the
N shell thickness, followed by rereflection from the
internal surface and emergence into the external
N \/\_ acoustic medium. If the penetrating rays, at least
N AN ~

L- mode waves, do not touch the filler surface, the
graph M,;° corresponds to the case of solid sphere.
Fig.1l The vertices of the graph M,;° and of the graph
M,r° are on the surface r =1 (all points inFig.1l
of these graphs must be black dots). We do not alter graph M,r° and the corresponding graphs
My °, My° M;p°. It is only, when the I- and T- modes propagate outside the filler, that we
leave only two graphs M,° and M,r° with black dots substituted for all points.

The cut aa' on graph M, (Fig.l) yields below it the sum of graphs M,;° and M;7° multi-
plied by phase functions of the transmission paths of the L- and T- modes and the reflection
coefficients of the internal surface r =¢

My =F" 4 R My X + R M3 Xy (2.4)

where FL denotes rays which first emerge after a single internal reflection and splitting on
surface r=4¢ (a single L-ray in the case of solid)

Fr— — RELFTIX; — RETPT, " Xy (2.5)

where R;,L4F are the values of the reflection coefficients characterizing the wave process
in the acoustic filler, Tpn4 are the transmission coefficients of the corresponding waves
passing from the shell into the external acoustic medium, X; and X, are phase functions that
have the property (in the asymptotic sense for high |[o ] )
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Xl =—Y4 Yir = —-X Xr (2.86)
The cut bb' of the graph M4’ (Fig.l) similarly yields the sum
My = RyMy Xy + Ryl Mar X o (2.7)

where Ryl4 are the reflection coefficients of waves at the surface r =1 from the inside

and back to the shell.

Interchanging the subscripts L and T, in (2.4) and (2.7) we obtain analogous expressions
for M,r® and M,r°. As the result we obtain a system of fourth-order linear algebraic equa-
tions for M,,°. Solving that system using (2.3) we find M,, and M,r. Summing all waves
first rereflected in the shell, and then propagating into the external acoustic medium, we
obtain

U=M2L+Mzr (2.8)
Formula (2.1) may be represented in the form *
Ry=R,y—U (2.9)

where R,y is the reflection coefficient of the external surface of the body. We equate terms
of like phase functions Y in the numerators and denominators of the second terms of the right-
hand sides of (2.1) and (2.9). Taking into account that the structure of the coefficients

R;‘,BF is of the same form as (2.9) for a liquid sphere (which is also established using the
graphs)

A; F B

ABF _ pAB __ nNAB  yAB _ TrpTn
Ry =Ry — 0%, =
- Rnyp

where R, is the reflection coefficient of the wave from the inner surface of the shell into
the filler, Tl,“ is the transmission coefficient of an A-mode (4 = L, T) from the shell to
the filler, T,4 is the transmission coefficient of the sound wave passing from the acoustic
filler to the shell when it is converted into an A-mode wave (4 = L, T), we obtain

Na=R{Y, Vmapra=RE', cha=TpA ATt (2.10)
Vmapoga=T15*Tn®, d=nr —rurr

o= AZB (Aana — rags), Ta= — R{*

Viagip=RiAB, Ghg==T" Tt
Vmapagp=—T1*Ta®, &=Tr — irir
T= 2 (AaTiz— Fais)
A, B
Relations for the other coefficients in (1.3) are established by comparing (l1.2) with

(2.1).
Thus by using graphs a physical meaning can be given to the coefficients in (1.3) and
(2.1), and they can be expressed in terms of the reflection and transmission coefficients

of the two spherical interxfaces r =1 and r =e.

3. We will evaluate the Sommerfeld-Watson integral using the method of steepest descent
/16/, assuming that |®] and |v| are large. For this we use the respective asymptotic
formulas for the Hankel spherical functions and Legendre functions /11, 12/ appearing in
(L.1)—~(1.3). From these asymptotic forms and (2.6) we represent R; in the form of an
expansion in reflected and rereflected waves. The result of evaluation of the integral is

« 2N o
Pom 0ol (©) 3 N, Y SumsRams (V) 02D (0Liime) (3.1)

nz=) m=90 §=0

In the case of a high-frequency short-duration sinusoidal signal /6—8/, we have

f)y=sinagt[U(x) =U(x—t)l, t=—, To=--

where w, is the carrier frequency, t is the time, and %, is the signal duration. The compon-
ents of the geometric part of the echo-signal yield

*See the previous footnote.
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Here Npyp, (0) = N =nv/ow =siny are the real solutions of the saddle-point equation /16/
Bums = 29 — %o — %1 — (20 — m) (y — Y2) — I (Y2 — Tp) = (3.3)
257F + 5 {mU (1 = BrN) + (2n —m) [U (1 = BN) —
Ue—BN)] + @ —m) U (e —PrN)
siny =rsinx = [ysinx, = Pa7lsiny, =
eppisin¥s(d =L, I B=L, T, F)
/ i s )
Snme = 605&1005 * ( sin ;ling:]m,f ) / oxp (l Tj""") (3.4)
Lne = (la cos %a)* + (r cogy)*— 2 (cos y)* + (2n — m)[(B" cos vz}~
(eBz* cos 7o)} + m [(B7 cos yr)* — (eBF cosyr)®] +
25 (efF cosTR)?, a=r1%
f:ms = —3 + sign (Lams) + Frms
fams =m U (NBL — 1) U (Br — eBr) + U (NBr — €} %
U(efr — Bry — U (NBr — )] + 2 [InU Br — efr) +
sU (efr — Br)1 (U (NBr — &) — U (NBL — 1)] +
(2n —m — 25) U (NB, — &) — U (NBr — &) U (Br —
efr) — U (NBy — 1) U (efr — Br)] — 2sU (e — NByr)

Here and below, U {#) and Ui (z) are the symmetric and antisymmetric unit functions.
For the functions R,,, we have

Rygo = Ry, Roymo = B;nm. Ryms = —Bam (n, m, s~ 0) (3.5)

The coefficient B,, corresponds to rereflection from the shell surface and refraction
back to the external medium, while B;,, corresponds to transmission into the filler, rereflec-
tion on the filler surface and refraction into the external acoustic medium.

The ray pattern of reflection, refraction and rereflection of geometric waves is shown
in Figs.2—4 for various angles of incidence of the sound pulse on the shell surface. The
notation corresponds here to the subscripts (ams) of the amplitude functions R,,, in (3.5).

For Bpm, Bim as a function of N:,,m we obtain the following dependence on the reflec~
tion and transmission coefficients in the shell thickness and the filler (2.10):
Bum == (erdnaa,m + & Ansg, me2)metianey, 2m + epAna, mms — (3.6}
f(An-l, m-x)mytzn
::m == (HLW::-L m=— fW:n-z, m-2 = '-'fTW:a—s. m—()m»ﬁ;zn-x.zm +
RrW ey, me = e (Wiis, mop)me i2n-8, 2n-2, an~1, 2} +
(in,_l, mel kTW::-z, megimysgn ~+ (kLW:'l*ﬁ. mey +

78
zw -3, m-z)mga(zn-z, -1, 2n}
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i
j s Qs N
Qem’-@qk = 2 Z H C;i)Cg:;bf rq'dfq 5:’63 , Qi=gq— 2 q;
j=1

i=1 qiSqU =]
4

g;=max {0, Qi — . 2+1 Peif» Qij=max {pj, Qi-i}
=1

Pu=pua+Guym Ppu=pua+k pan=2p—k pu=m—a
Piza =a& — f, Py = Pa1 — Gnm, Psz = Psiy Pea = Pu + Gum

8pm =2 (n — m), by = ag, by = ar, by = —(brr + br1)
f=fur + fre, & = &, by = &r, by = —(frr + r1)
ba® = a4, 2 = by, b4™ = (—R,,)™ 8,

™= (=R Wy m > 1), T =ty +Ir, T =T + I

Here C,™is the binomial coefficient. Formulas (3.2)~—(3.4), together with (2.10), enable us
to estimate in explicit form the amplitude of any of the echo-pulses, and the times of arrival
at the observer, which can be found from the equation =t = L,,,5 = const (3.4).

The author thanks Is. S. Podstrigach and N.D. Veksler for discussing the results.
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DIFFRACTION OF A PLANE WAVE BY AN INFINITE ELASTIC PLATE STIFFENED
BY A DOUBLY PERIODIC SET OF RIGID RIBS'

B. P. BELINSKII

Thediffraction of a plane wave by an infinite elastic plate stiffened by a
doubly periodic set of rigid ribs of moderate wave dimensions is studied.
The problem is reduced to an infinite quasiregular system of linear
algebraic eguations, and their solution describes the amplitudes of the
waves propagating from the plate into the fluid.

The effect of a periodic set of parallel ribs, which stiffen an elastic plate, on its
acoustic properties, has been studied in reasonable detail. An exact soclution of the prohlem
of the diffraction of a plane wave by such a plate is given in /1/ where the frequency rela-
tionships of the reflection and transmission coefficients of a plane wave were also studied
and simple approximate formulas were obtained for the limiting cases,

1. we will investigate the diffraction of a plane pressure wave

Po == exp (ik ((z cos @, + ysin @) sin 8, — z cos 6,))

incident on an infinite plate {—oo <<z, y < 0,2 =0} stiffened by a doubly periodic set of
rigid ribs {=o0 <z < 00, y= mb; —o0 <y <{ o0, = na; —oco < n,m< o} The pressure p (z, ¥,2)
in the medium satisfies the Helmholtz equation with the boundary condition at the plate given
by

DA—kE(z, N+ [Ple=0=0 (1.1)

(z 7= na, y 5= mb)

ko = (p°w*H°IDY

Here D is the cylindrical rigidity of the plate, E(z, y) is its displacement, connected with
the pressure by the adhesion condition §({(z, y) = p, (z, y, 0)/ (p,0®), p, is the density of the
liquid, A, is the two-dimensional Laplace operator, k, is the wave number of the flexural
waves in the plate, p° is the plate density and KH°is its thickness. The symbol [¢] (z = 0)
denotes the jump in the value of the function ¢ at z== 0. The harmonic dependence of the
processes on time exp (—iwt) is omitted.

We will first assume that fluid is present on one side of the plate only (z > 0). The
case of two-sided contact can be studied in exactly the same manner. We shall therefore only
refer to it at the stage of numerical analysis and interpretation of the results. The bound-
ary contact conditions (BCC) appear when the bending and torsional oscillations of the ribs
and their rigid coupling to the plate carrying them are taken into account /2/

—D o+ 2= 0) &) (v = na) = —ieZyl (1.2)
D [t + ofy) (& = na) = —iwZ;f,
(z = na, y %= mb)
—D B+ C— 0) &] (v = mb) = —i0Znt
D[ty + O8] (y = mb) = —iwZafy (y = mb, z = na)

Here ¢ is Poisson's ratio of the plate, and the operators Z,, Z, (p= 1,2) are the force and
momentum impedances of the ribs respectively.
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